Exercise 10.1.2

Find the Green's function for
(a) $\quad \mathcal{L} y(x)=\frac{d^{2} y(x)}{d x^{2}}+y(x), \quad\left\{\begin{array}{r}y(0)=0, \\ y^{\prime}(1)=0 .\end{array}\right.$
(b) $\quad \mathcal{L} y(x)=\frac{d^{2} y(x)}{d x^{2}}-y(x), \quad y(x)$ finite for $-\infty<x<\infty$.

Solution

The Green's function for an operator \mathcal{L} satisfies

$$
\mathcal{L} G=\delta(x-t)
$$

Part (a)

For the operator $\mathcal{L}=d^{2} / d x^{2}+1$, this equation becomes

$$
\begin{equation*}
\frac{d^{2} G}{d x^{2}}+G=\delta(x-t) \tag{1}
\end{equation*}
$$

If $x \neq t$, then the right side is zero.

$$
\frac{d^{2} G}{d x^{2}}+G=0, \quad x \neq t
$$

The general solution can be written in terms of sine and cosine. Different constants are needed for $x<t$ and for $x>t$.

$$
G(x, t)= \begin{cases}C_{1} \cos x+C_{2} \sin x & \text { if } 0 \leq x<t \\ C_{3} \cos x+C_{4} \sin x & \text { if } t<x \leq 1\end{cases}
$$

Four conditions are needed to determine these four constants. Two of them are obtained from the provided boundary conditions.

$$
\begin{array}{rlrl}
G(0, t) & =C_{1}(1)+C_{2}(0)=0 & & \rightarrow \\
C_{1} & =0 \\
\frac{d G}{d x}(1, t) & =-C_{3} \sin 1+C_{4} \cos 1=0 & & \rightarrow
\end{array} C_{4}=C_{3} \frac{\sin 1}{\cos 1}=C_{3} \tan 1 ~ l ~ l
$$

As a result, the Green's function becomes

$$
G(x, t)=\left\{\begin{array}{ll}
C_{2} \sin x & \text { if } 0 \leq x<t \\
C_{3} \cos x+\left(C_{3} \tan 1\right) \sin x & \text { if } t<x \leq 1
\end{array} .\right.
$$

The third condition comes from the fact that the Green's function must be continuous at $x=t$: $G(t-, t)=G(t+, t)$.

$$
C_{2} \sin t=C_{3} \cos t+\left(C_{3} \tan 1\right) \sin t
$$

Divide both sides by $\cos t$.

$$
C_{2} \tan t=C_{3}+\left(C_{3} \tan 1\right) \tan t
$$

Solve for C_{3}.

$$
\begin{equation*}
C_{3}=C_{2} \frac{\tan t}{1+\tan 1 \tan t} \tag{2}
\end{equation*}
$$

The fourth and final condition is obtained from the defining equation of the Green's function, equation (1).

$$
\frac{d^{2} G}{d x^{2}}+G=\delta(x-t)
$$

Integrate both sides with respect to x from $t-$ to $t+$.

$$
\begin{gathered}
\int_{t-}^{t+}\left(\frac{d^{2} G}{d x^{2}}+G\right) d x=\int_{t-}^{t+} \delta(x-t) d x \\
\int_{t-}^{t+} \frac{d^{2} G}{d x^{2}} d x+\underbrace{\int_{t-}^{t+} G d x}_{=0}=\underbrace{\int_{t-}^{t+} \delta(x-t) d x}_{=1} \\
\left.\frac{d G}{d x}\right|_{t-} ^{t+}=1 \\
\frac{d G}{d x}(t+, t)-\frac{d G}{d x}(t-, t)=1 \\
\left(-C_{3} \sin t+C_{3} \tan 1 \cos t\right)-\left(C_{2} \cos t\right)=1
\end{gathered}
$$

Divide both sides by $\cos t$.

$$
\begin{gathered}
-C_{3} \tan t+C_{3} \tan 1-C_{2}=\frac{1}{\cos t} \\
C_{3}(\tan 1-\tan t)=\frac{1}{\cos t}+C_{2}
\end{gathered}
$$

Divide both sides by $\tan 1-\tan t$.

$$
C_{3}=\frac{1}{\cos t(\tan 1-\tan t)}+\frac{C_{2}}{\tan 1-\tan t}
$$

Substitute equation (2) for C_{3}.

$$
C_{2} \frac{\tan t}{1+\tan 1 \tan t}=\frac{1}{\cos t(\tan 1-\tan t)}+\frac{C_{2}}{\tan 1-\tan t}
$$

Solve for C_{2}.

$$
\begin{gathered}
C_{2}\left(\frac{\tan t}{1+\tan 1 \tan t}-\frac{1}{\tan 1-\tan t}\right)=\frac{1}{\cos t(\tan 1-\tan t)} \\
-C_{2} \frac{\tan ^{2} t+1}{(1+\tan 1 \tan t)(\tan 1-\tan t)}=\frac{1}{\cos t(\tan 1-\tan t)} \\
-C_{2} \frac{\sec ^{2} t}{1+\tan 1 \tan t}=\sec t \\
C_{2}=-\cos t(1+\tan 1 \tan t)
\end{gathered}
$$

Use equation (2) to get C_{3}.

$$
C_{3}=C_{2} \frac{\tan t}{1+\tan 1 \tan t}=(-\cos t)(\tan t)=-\sin t
$$

Therefore, the Green's function for $\mathcal{L}=d^{2} / d x^{2}+1$ subject to the provided boundary conditions is

$$
G(x, t)=\left\{\begin{array}{ll}
-\cos t(1+\tan 1 \tan t) \sin x & \text { if } 0 \leq x<t \\
-\sin t \cos x+(-\sin t \tan 1) \sin x & \text { if } t<x \leq 1
\end{array} .\right.
$$

Part (b)

For the operator $\mathcal{L}=d^{2} / d x^{2}-1$, this equation becomes

$$
\begin{equation*}
\frac{d^{2} G}{d x^{2}}-G=\delta(x-t) \tag{3}
\end{equation*}
$$

If $x \neq t$, then the right side is zero.

$$
\frac{d^{2} G}{d x^{2}}-G=0, \quad x \neq t
$$

The general solution can be written in terms of exponential functions. Different constants are needed for $x<t$ and for $x>t$.

$$
G(x, t)= \begin{cases}C_{5} e^{-x}+C_{6} e^{x} & \text { if }-\infty<x<t \\ C_{7} e^{-x}+C_{8} e^{x} & \text { if } t<x<\infty\end{cases}
$$

Four conditions are needed to determine these four constants. Two of them are obtained from the provided boundary condition.

$$
y(x) \text { finite for }-\infty<x<\infty . \Rightarrow\left\{\begin{array}{l}
C_{5}=0 \\
C_{8}=0
\end{array}\right.
$$

As a result, the Green's function becomes

$$
G(x, t)=\left\{\begin{array}{ll}
C_{6} e^{x} & \text { if }-\infty<x<t \\
C_{7} e^{-x} & \text { if } t<x<\infty
\end{array} .\right.
$$

The third condition comes from the fact that the Green's function must be continuous at $x=t$: $G(t-, t)=G(t+, t)$.

$$
C_{6} e^{t}=C_{7} e^{-t}
$$

Solve for C_{7}.

$$
\begin{equation*}
C_{7}=C_{6} e^{2 t} \tag{4}
\end{equation*}
$$

The fourth and final condition is obtained from the defining equation of the Green's function, equation (3).

$$
\frac{d^{2} G}{d x^{2}}-G=\delta(x-t)
$$

Integrate both sides with respect to x from $t-$ to $t+$.

$$
\begin{gathered}
\int_{t-}^{t+}\left(\frac{d^{2} G}{d x^{2}}-G\right) d x=\int_{t-}^{t+} \delta(x-t) d x \\
\int_{t-}^{t+} \frac{d^{2} G}{d x^{2}} d x-\underbrace{\int_{t-}^{t+} G d x}_{=0}=\underbrace{\int_{t-}^{t+} \delta(x-t) d x}_{=1} \\
\left.\frac{d G}{d x}\right|_{t-} ^{t+}=1
\end{gathered}
$$

$$
\begin{gathered}
\frac{d G}{d x}(t+, t)-\frac{d G}{d x}(t-, t)=1 \\
\left(-C_{7} e^{-t}\right)-\left(C_{6} e^{t}\right)=1
\end{gathered}
$$

Substitute equation (4) for C_{7}.

$$
\begin{gathered}
\left(-C_{6} e^{2 t} e^{-t}\right)-\left(C_{6} e^{t}\right)=1 \\
-2 C_{6} e^{t}=1 \\
C_{6}=-\frac{1}{2} e^{-t}
\end{gathered}
$$

Use equation (4) to get C_{7}.

$$
C_{7}=C_{6} e^{2 t}=-\frac{1}{2} e^{t}
$$

Therefore, the Green's function for $\mathcal{L}=d^{2} / d x^{2}-1$ subject to the provided boundary condition is

$$
G(x, t)=\left\{\begin{array}{ll}
-\frac{1}{2} e^{-t} e^{x} & \text { if }-\infty<x<t \\
-\frac{1}{2} e^{t} e^{-x} & \text { if } t<x<\infty
\end{array} .\right.
$$

